domingo, 13 de março de 2022

Programa Júpiter Atual

 Júpiter - Sistema de Graduação

 

Escola Superior de Agricultura "Luiz de Queiroz"

 

Ciências Exatas

 

Disciplina: LCE0137 - Inteligência Artificial, Data Mining e Gestão para Inovação e Hipercompetitividade

 

Créditos Aula:

2

Créditos Trabalho:

0

Tipo:

Semestral

 

Objetivos

Desenvolver no aluno senso crítico em Inteligência Artificial, Data Mining e Gestão – Sistemas Mundiais de Gestão- para Inovação e hipercompetitividade. O conhecimento será útil em sua vida acadêmica e principalmente no mercado de trabalho, aumentando significativamente a empregabilidade e competitividade do egresso.

 

 

Docente(s) Responsável(eis)

 

Cristian Marcelo Villegas Lobos

 

Gabriel Adrian Sarries

 

Renata Alcarde Sermarini

 

 

 

Programa Resumido

Inteligência Artificial (IA): conceito, algoritmos e aplicações em gestão, engenharia, biologia, economia, ambiência e pesquisa. Aprendizado de máquina e redes neurais, comparação de resultados com métodos estatísticos convencionais. Métodos estatísticos para Data Mining. Métodos de gestão e certificação internacional da qualidade. O NIT Qualidade e Metrologia na Agropecuária USP/EMBRAPA/CNPq/Indústria. Aplicação de IA e Data Mining na Gestão da Inovação em ambientes de Hipercometitividade.

 

Programa

Inteligência Artificial (IA): conceito, algoritmos: Rain Forest, Support Vector Machine, Naive Bayes, E Clasification e Regression Tree . Aplicações em gestão, engenharia, biologia, ambiência, economia, e pesquisa. Aprendizado de máquina e redes neurais, comparação de resultados com métodos estatísticos convencionais, linguagens R, Python, SAS e outras. Noções introdutórias: Regressão Logística, NPMANOVA, DiscriminanteNP. Métodos estatísticos para Data Minig: univariados, multivariados, paramétricos e robustos. Métodos de gestão como Lean Startup-Amazon, TQM-Toyota- Porsche-GM, ISO-9000-14000-22000-27000, GlobalGAP, FSC, BSC, PNQ, EQA, 6 Sigma, Malcolm Baldrige, etc. O Núcleo de Inovação Tecnológica Qualidade e Metrologia na Agropecuária USP/EMBRAPA/CNPq/Indústria, coordenado pelo CENA e ESALQ USP. Aplicação de IA, Data Mining e Gestão em ambientes de Hipercometitividade e hiperinovação.

 

Avaliação

 

 

     

Método

     

A avaliação do aprendizado é feita por meio de prova (P), relatórios (R) e apresentação de seminário (S) utilizando hipermidias.

 

 

     

Critério

     

A média final é obtida da seguinte forma: 0,3 P + 0,35 R + 0,35 S.

 

 

     

Norma de Recuperação

     

Será feita sob a forma de uma prova com duas horas de duração, aplicada após o término das aulas, em época determinada pela USP. A média final será a média aritmética entre a nota desta prova e a média obtida no semestre.

 

 

Bibliografia

ALONSO R. Inteligencia Artificial y Estadística. Estadística Española. Disponível em: . Acesso em: 20/2/2019 AZEVEDO FILHO, A. J. B.V. . Princípios de Inferência Dedutiva e Indutiva: Noções de Lógica e Métodos de Prova. 1/1. ed. Scotts Valley, EUA: CreateSpace Publishers, 2010. v. 1. 140p . BARBOSA L. P.; MORAES W. F. A. Estratégias em Ambientes Hipercompetitivos: O Caso da Indústria Brasileira de Embalagens para Cervejas e Refrigerantes. 2016. Disponível em:< http://www.anpad.org.br/admin/pdf/enanpad2001-eso-276.pdf>. Acesso em: 20/02/2019. COELHO A. C. As 7 tendências para o uso de inteligência artificial no Direito em 2018. Thomson Reuters The Answer Company. 2018. Disponível em: < https://www.thomsonreuters.com.br/content/dam/openweb/documents/pdf/Brazil/white-paper/As_7_Tend%C3%AAncias_para_o_uso_da_Inteligencia_Artificial_EM_2018.pdf > Acesso em: 21/2/2019. CURY R. G.; SERAFIM J. S. A Formação em Ciência de Dados: Uma Analise Preliminar do Panorama Estadunidense. DOI: 10.5433/1981-8920.2016v21n2p307. 2016. Disponível em:< http://www.uel.br/revistas/uel/index.php/informacao/article/download/27945/20195>. Acesso em: 20/02/2019. GOVERNO FEDERAL. Agenda brasileira para a Indústria 4.0 – O Brasil Preparado para os Desafios do Futuro. Ministério da Industria Comercio e Serviços. Disponível em: < http://www.industria40.gov.br/>. Acesso em: 20/02/2019. OVANESSOFF A.; PLASTINO E. Como a Inteligência Artificial pode Acelerar o Crescimento de América do Sul. 2018. Disponível em: https://www.accenture.com/t20170927T065936Z__w__/us-en/_acnmedia/PDF-50/Accenture-Como-a-inteligencia-artificial-acelero-crescimento-da-america-do-sul.pdf. Acesso em: 20/02/2019. SANTOS R. Introdução à Mineração de Dados com Aplicações em Ciências Ambientais e Espaciais. LAC-INPE.2012. Disponível em: . Acesso em: 20/02/2019. TEIXEIRA T.M.C. Uma Reflexão Teórica Sobre a Subjetividade da Informação. Perspectivas em: Ciência da Informação, v.22, n.4, p.82-97, out./dez. 2017. Disponível em: . Acesso em: 20/02/2019. VON ZUBEN F. Introdução à Inteligência Artificial. DCA/FEEC/Unicamp. 2017. Disponível em: . Acesso em: 20/02/2019.

 

 

Nenhum comentário:

Postar um comentário