Inteligência artificial indutiva não supervisionada (Machine Learning) para classificação - Cluster analysis
Cidade | Regiao | Cid_reg | Habitantes | IDH | Rend_Cap | Cap_Empr | Teci_Emr | Gov_Descn | Org_Prod | Ins_Compet | Edu_Empr |
Piracicaba | SE | Pir_SE | 439 | 0,785 | 1,14 | 0,54 | 0,695 | 0,796 | 0,598 | 0,761 | 0,004 |
Sao_Car | SE | SC_SE | 252 | 0,805 | 1,08 | 0,686 | 0,653 | 0,812 | 0,564 | 0,788 | 0,002 |
Sao_Jose | SE | SJ_SE | 461 | 0,797 | 1,17 | 0,613 | 0,73 | 0,648 | 0,597 | 0,769 | 0,011 |
Mon_Clar | SE | MC_SE | 409 | 0,77 | 0,65 | 0,481 | 0,651 | 0,696 | 0,549 | 0,666 | 0,124 |
Rondono | CO | Ron_CO | 232 | 0,755 | 0,84 | 0,452 | 0,509 | 0,626 | 0,567 | 0,651 | 0 |
Anápolis | CO | Aná_CO | 387 | 0,737 | 0,79 | 0,481 | 0,645 | 0,695 | 0,562 | 0,708 | 0 |
Camp_Gra | NE | CG_NE | 410 | 0,72 | 0,63 | 0,458 | 0,565 | 0,683 | 0,571 | 0,59 | 0,584 |
Petroli | NE | Pet_NE | 349 | 0,697 | 0,61 | 0,419 | 0,43 | 0,678 | 0,528 | 0,57 | 0,009 |
Rio_Bran | Norte | RB_Norte | 407 | 0,727 | 0,74 | 0,342 | 0,47 | 0,663 | 0,486 | 0,503 | 0,0009 |
Boa_Vista | Norte | BV_Norte | 399 | 0,752 | 0,79 | 0,338 | 0,458 | 0,538 | 0,502 | 0,585 | 0,082 |
Maringa | S | Mar_S | 424 | 0,808 | 1,2 | 0,652 | 0,753 | 0,791 | 0,611 | 0,765 | 0,01 |
Cax_Sul | S | CS_S | 347 | 0,75 | 0,95 | 0,446 | 0,715 | 0,654 | 0,559 | 0,715 | 0,046 |
| | Kruskal Wallis | NS | * | * | * | * | NS | * | * | NS |
Inteligência artificial indutiva (Machine Learning) não supervisionada para classificação - Cluster analysis
Cluster e Dendrograma de todas as cidades, programa SAS: ver banco de dados
data cidades;
input Cid_reg $ IDH Rend_Cap Cap_Empr Teci_Emr Org_Prod Ins_Comp;
cards;
Pir_SE 0.785 1.14 0.54 0.695 0.598 0.761
SC_SE 0.805 1.08 0.686 0.653 0.564 0.788
SJ_SE 0.797 1.17 0.613 0.73 0.597 0.769
MC_SE 0.77 0.65 0.481 0.651 0.549 0.666
Ron_CO 0.755 0.84 0.452 0.509 0.567 0.651
Ana_CO 0.737 0.79 0.481 0.645 0.562 0.708
CG_NE 0.72 0.63 0.458 0.565 0.571 0.59
Pet_NE 0.697 0.61 0.419 0.43 0.528 0.57
RB_Norte 0.727 0.74 0.342 0.47 0.486 0.503
BV_Norte 0.752 0.79 0.338 0.458 0.502 0.585
Mar_S 0.808 1.2 0.652 0.753 0.611 0.765
CS_S 0.75 0.95 0.446 0.715 0.559 0.715
;
proc print;
run;
proc cluster data=cidades outtree = arvore method = average;
var IDH Rend_Cap Cap_Empr Teci_Emr Org_Prod Ins_Comp;
id Cid_reg;
run;
PROC TREE DATA = arvore;
RUN;
Cluster e Dendrograma de todas as regiões e Piracicaba, programa SAS:
data regioes;
input Local $ IDH Rend_Cap Cap_Empr Teci_Emr Org_Prod Ins_Compet;
cards;
CO 0.746 0.815 0.4665 0.577 0.5645 0.6795
NE 0.7085 0.62 0.4385 0.4975 0.5495 0.58
Norte 0.7395 0.765 0.34 0.464 0.494 0.544
S 0.779 1.075 0.549 0.734 0.585 0.74
SE 0.78925 1.01 0.58 0.68225 0.577 0.746
Piracic 0.785 1.14 0.54 0.695 0.598 0.761
;
proc print;
run;
proc cluster outtree = arvore method = average;
var IDH Rend_Cap Cap_Empr Teci_Emr Org_Prod Ins_Compet;
id Local;
run;
PROC TREE DATA = arvore;
RUN;
Nenhum comentário:
Postar um comentário